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Transplantation of mesenchymal stem cell-differentiated cardiac progenitor cells for myocardial injury 
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Abstract— Recently, stem cell therapy has been investigated as a strategy to prevent or reverse damage to heart tis-
sue. Although the results of cell transplantation in animal models and patients with myocardial ischemia are promis-
ing, the selection of the appropriate cell type remains an issue that requires consideration. In this study, we aimed to 
evaluate the effect of cardiac progenitor cell transplantation in a mouse model of myocardial ischemia. The cardiac 
progenitor cells used for transplantation were differentiated from umbilical cord blood mesenchymal stem cells. Ani-
mal models injected with phosphate-buffered saline (PBS) and healthy mice were used as controls. Cell grafting was 
assessed by changes in blood pressure and histological evaluation. After 14 days of transplantation, the results demon-
strated that the blood pressure of transplanted mice was stable, similar to healthy mice, whereas it fluctuated in PBS-
injected mice. Histological analysis showed that heart tissue had regenerated in transplanted mice, but remained dam-
aged in PBS-injected mice. Furthermore, trichrome staining revealed that the transplanted mice did not generate sig-
nificant amount of scar tissue compared with PBS-injected control mice. In addition, the cardiac progenitor cells 
managed to survive and integrate with local cells in cell-injected heart tissue 14 days after transplantation. Most im-
portantly, the transplanted cells did not exhibit tumorigenesis. In conclusion, cardiac progenitor cell transplantation 
produced a positive effect in a mouse model of myocardial ischemia. 
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INTRODUCTION 
Over the past half-century, scientific advances in 
modifying risk factors, drug treatment, and surgical 
interventions have significantly improved the quality 
of life and lifespan of patients with damage to the car-
diac muscle following myocardial ischemia. However, 
current treatment strategies fail to reverse scar forma-
tion or repair the injured ventricle wall after myocar-
dial infarction (MI), which eventually leads to ven-
tricular dysfunction and arrhythmia. Currently, stem 
cell therapy is considered as a strategy with great po-
tential to prevent or reverse cardiac muscle damage 
and promote tissue regeneration. 

The preclinical model of ischemic heart disease has 
raised awareness about the safety and efficiency of 
stem cell therapy (Quyyumi et al., 2011). Despite the 
promising results of cell transplantation in animal 
models and patients with ischemic cardiomyopathy, it 
remains to be determined which cell type is the most 
appropriate for this therapy. Current cell therapies for 
heart disease have shown remarkable developments 
compared with the first cell transplantation performed 
for heart damage more than 20 years ago (Marelli et 
al., 1992). Initially, scientists focused on using stem 
cells and skeletal muscle satellite cells because they 
were easily identified, and exhibited strong prolifera-
tion rates and high ischemia-withstanding ability 
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(Marelli et al., 1992; Murry et al., 2002; Murry et al., 
1996). However, these cell sources were later shown to 
be incapable of differentiating into myocardial cells, as 
well as exhibiting low incorporation with local myo-
cardiocytesin vivo post-transplantation (Murry et al., 
2005; Reinecke et al., 2002). Subsequent studies search-
ing for appropriate cell sources capable of inducing 
positive therapeutic effects examined numerous cell 
sources, including bone marrow-derived mesenchy-
mal stem cells (MSCs) (Mazo et al., 2012). Embryonic 
stem cells (ESCs) can be differentiated into mature 
cells and have been shown to regenerate damaged 
heart tissue in animal models. However, because of 
bioethical issues, legality (Blum and Benvenisty, 2008), 
and immunity (Zhu et al., 2009), their use in human 
trials have been substantially limited to date. In their 
place, numerous groups have investigated the use of 
induced pluripotent stem cells (iPSCs) (Wernig et al., 
2007) or induced cardiomyocytes(Ieda et al.). Recently, 
the repeatability, reliability, and safety of cell repro-
gramming and genetic techniques have been exam-
ined in clinical trials (Kanashiro-Takeuchi et al., 2011; 
Mushtaq et al., 2011). Currently, heart muscle cells 
derived from adult stem cells, including bone mar-
row-derived mononuclear cells (Hare, 2011; Perin et 
al., 2012; Traverse et al., 2009; Williams et al., 2011), 
MSCs (Williams and Hare, 2011), adipose tissue stem 
cells (Mazo et al., 2012), and stem cells derived from 
cardiac tissue (Bolli et al., 2011; Makkar et al.) have 
been prioritized for clinical testing and evaluation. 

The results of recent clinical trials support the notion 
that stem cell therapy is safe and is capable of repair-
ing heart structures, as well as restoring heart function 
(Karantalis et al., 2012; Williams et al., 2011). 

The above results help to confirm the safety and effi-
ciency of MSC transplantation for cardiovascular dis-
ease. However, the majority of clinical studies have 
used autologous bone marrow-derived MSCs. Because 
the properties of bone marrow-derived MSCs tend to 
decline with age, studies continuing to examine if al-
ternative cell sources are necessary. Of these cells, hu-
man umbilical cord blood-derived stem cells have 
proven to be a valuable candidate (Goldstein et al., 
2007). In animal models, cord blood stem cells re-
duced infarct size, increased heart wall thickness, re-
duced inflammation at the lesion site, and improved 
the ejection fraction of the left ventricle (Henning et 
al., 2004; Henning et al., 2006; Henning et al., 2008). 
However, before proceeding to clinical studies and 
applications, further studies are still required. 

Until now, the exact mechanism of the effects pro-
duced by stem cell transplantation in the treatment of 
MI remain unknown. However, cell therapy is be-
lieved to regenerate myocardial tissue damages 
through either one or both of the following mecha-
nisms: (i) creating new myocardiocytes and inducing 
angiogenesis to supply nutrients for myocardial cell 
mass, and/or (ii) releasing paracrine factors to stimu-
late cell regeneration, induce the directed-
differentiation of stem cells, prevent scarring, and 
stimulate angiogenesis (Mazo et al., 2012). 

In this study, cardiac progenitor cells, differentiated 
from human umbilical cord blood-derived MSCs 
(UCB-MSCs), were transplanted into a mouse model 
of myocardial ischemia to determine whether they 
could be induced to differentiate into mature heart 
muscle cells, which could replace dead tissue and re-
duce the infarct lesion area. 

 

 

MATERIALS AND METHODS 
This study was approved by the Institutional Ethical 
Committee of Laboratory of Stem Cell Research and 
Application, University of Science, Vietnam National 
University, Vietnam. 

Cell source for transplantation 

Third- to fifth-generation human UCB-MSCs were 
induced to differentiate into CPCs using 5-
Azacytidine (5-Aza)-containing medium, according to 
the process of Pham et al.(Pham et al., 2014). Briefly, 
the cells were induced in Dulbecco’s-modified Eagle’s 
medium supplemented with 10% fetal bovine serum 
(FBS); 1% penicillin/streptomycin; 10 μM 5-Aza; 50 
ng/mL activin A; 0.1 mM ascorbic acid. After 24 h in-
duction, cells were washed twice with phosphate-
buffered saline (PBS) and cultured in Dulbecco’s-
modified Eagle’s medium supplemented with 15% 
FBS, 1% penicillin/streptomycin, 50 ng/mL activin A; 
0.1 mM ascorbic acid, without 5-Aza. The medium 
was replaced every 3 days until day 30. 

Cell transplantation 

Male albino mice (25–30g) were anesthetized by thigh 
muscle injection with 0.022 g/mL ketamine until the 
ratio of ketamine anesthetic reached 87 mg/kg of body 
weight (Kanno et al., 2002). Mice were intubated and 
mechanically ventilated, with pump speed 120–130 
cycles/min, pump volume per cycle was 1 mL/100 g 
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body weight. After left thoracotomy, ligation of the left 
anterior descending artery (LAD) was performed at 
the distal 1/3 of the coronary artery from the aorta to 
the heart apex (Degabriele et al., 2004). After 3 min, 
CPCs were infused into the area of infarction, at a 
density 106 cells per 30 μL for each mouse. Then, the 
chest was closed, and the muscle layer was sewn tight 
and applied with antiseptic. The mouse was placed 
carefully into a clean case. Normal mice were used as 
positive controls, while LAD ligation plus PBS injec-
tion was used as a negative control. 

Transplantation efficacy was assessed according to 
criteria, including blood pressure fluctuation, and the 
survival, migration, and influence of CPCs on the 
grafted heart tissue. 

Blood pressure monitoring methods 

Mice blood pressure changes were monitored using a 
58500 Blood Pressure Recorder (Ugo BasileSrl, Italy), 
1–2 weeksbefore and after cell transplantation. 

To facilitate with stress, mice were trained to be famil-
iar with tail-cuff blood pressure measurements. The 
animals were anesthetized by placing them in an anes-
thesia closed chamber, which provided continuous 
supply of 5% pure oxygen at a rate 1 L/min of isoflu-
rane, until coma was induced. The mouse tail was in-
serted into the blood pressure measuring ring with 
signal sensor. Systolic (SYS) and diastolic (DIA) blood 
pressure of the animals were measured and recorded 
following the manufacturer’s instructions (58600 
Blood Pressure Recorder). Mean arterial pressure 
(MAP) was calculated by the following formula: 

MAP = [(2 × DIA) + SYS] / 3 

Heart tissue harvesting and cryosectioning 

The animal heart was washed with PBS and fixed in 
4% paraformaldehyde overnight. After sucrose cryo-
protection, the tissue was moulded with optimum cut-
ting temperature compound and cryosectioned into 
10-μm-thick slices. The obtained slices were then 
treated with hematoxylin and eosin (H&E) stain, 
Trichrome stain, and immunohistochemistry.  

Hematoxylin& eosin staining  

H&E staining was performed to evaluate tissue and 
cell structures. Slices were immersed in a graded se-
ries of alcohol solutions as follows: 100% for 2 min, 
90% for 2 min, 70% for 1 min, 50% for 1 min, and dou-
ble-distilled water for 2 min. The surrounding tissue 
area was dried with absorbent paper, followed by an 

addition of a drop of hematoxylin stain onto the tissue 
slice. After 2 min, the slice was washed with distilled 
water. Two drops of eosin stain were added to the tis-
sue slice for 30 s and the specimen was successively 
embedded again with: 50% alcohol for 1 min, 70% al-
cohol for 1 min, 90% alcohol for 1 min, and 100% alco-
hol for 1 min. Immersion oil was dispensed onto the 
slice followed by lamelle fixation. 

Trichrome staining  

Masson’s Trichromedye is commonly used to distin-
guish collagen in pathological cases. Three dyes are 
used to identify collagen, fibrin, and erythrocytes. Tis-
sue was initially stained with Biebrich Scarlet acidic 
dye (light red), which has a binding preference to 
acidic components in the tissue. When the tissue was 
treated with phosphomolybdic acid, the red color was 
displaced from the collagen component. In addition, 
phosphomolybdic acid also generated links between 
collagen and light green molecules that tainted the 
collagen green. 

Tissue specimens were immersed in a graded series of 
alcohol solutions as follows: 100% for 1 min, 90% for 1 
min, and 80% for 1 min. Samples were washed gently 
twice with distilled water, followed by immersion in 
Bouin-containing solution overnight at 56 °C. Samples 
were rinsed with water to remove traces of piric acid 
(yellow) and soaked in Weigert’s iron hematoxylin 
solution for 10 min. Samples were gently washed con-
tinuously with distilled water for 30 s. Next, they were 
embedded in Biebrich scarlet solution for 1 min. The 
slices were washed quickly again with distilled water 
and immersed in 5% phosphomolybdic acid solution 
for 30 min. Then, samples were transferred and 
bathed in the light green solution for 10 min. The 
samples were rinsed quickly with distilled water and 
immersed in 0.5% acetic acid solution for 2 min. The 
samples were immersed in a series of graded alcohol 
solutions as follows: 95% for 1 min × 2, followed by 
100% for 1 min × 2. Immersion oil was dropped onto 
the slices, followed by lamelle fixation. Trichrome-
stained sections were identified and collagen struc-
tures were evaluated by ImageJ software. 

Immunocytochemistry staining  

Cells grown on coverslips (Santa Cruz Biotechnology, 
Dallas, TX, USA) were prepared for immunocyto-
chemistry as follows: cells were fixed in 4% parafor-
maldehyde solution for 15 min; permeabilized with 
0.1% Triton X-100; washed three times in PBS; blocked 
with BSA; and incubated with a primary human anti-
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body alpha-actinin (Abcam 1:400) or human Troponin 
T (Abcam 1:400) overnight at 4 °C. After washing, the 
samples were treated with goat anti-rabbit IgG secon-
dary antibodies (Abcam 1:400) and Hoechst 33342 
(Sigma 1:400) for 45 min at room temperature. The 
samples were rinsed three times with PBS, mounted, 
and observed under a fluorescent microscope (Zeiss 
Axiovert). 

Immunohistochemistry staining 

Tissue sections were fixed and stained with Hoechst 
33342 (Sigma, 1:400) and antibodies specific for human 
proteins of interest, Troponin T (Abcam, 1:200) and 
alpha-actinin (Abcam, 1:200), according to the manu-
facturer’s protocol. Slides containing tissue sections 
were washed briefly for 2 × 5 min in PBS. Tissue sec-
tions were blocked with 5% BSA at room temperature 
for 30 min and incubated with primary antibodies at 
room temperature for 60 min. After washing, slides 
were then treated with secondary antibodies at room 
temperature for 60 min in the absence of light to avoid 
optical bleaching. The samples were washed 4 × 5 min 
in PBS, coated with polyvinyl alcohol solution, and 
covered by lamelle. Their images were observed and 
recorded by fluorescence microscopy. 

Reverse transcription-polymerase chain reaction  

Before transplantation, CPCs were tested for the 

expression of human Sox2 and Oct4 genes, which are 
used to characterize tumor formation, using reverse 
transcription-polymerase chain reaction (RT-PCR). 
Human glyceraldehyde 3-phosphate dehydrogenase 
(hGAPDH) was used as an internal control. 

At 14 days post-transplantation, total RNA from 
hearts of control animals or test animals was collected 
to examine the tumor formation capacity of infused 
cells in vivo. 

Total RNA was extracted from CPCs prepared for 
transplantation, human MCF7 breast cancer cells, and 
heart tissue samples 14 days post-transplantation us-
ing Easy Blue Reagent (Intron), following the manu-
facturer’s instructions. cDNA was synthesized from 
RNA using the Superscript II Reverse Transcriptase 
(Invitrogen), according to the manufacturer’s proce-
dure. Next, PCR was performed using Taq DNA Po-
lymerase (Takara, Shiga, Japan). The primers of the 
examined genes are listed in Table 1. 

Gel electrophoresis was performed on RT-PCR prod-
ucts on 2% agarose gels, at 100 V, for 60 min. A 100-bp 
DNA ladder was used for all products. The results 
were analyzed by electrophoresis using the Gel Doc IT 
system (UVP). 

 

 

Table 1. Primers of the examined genes 

Gene Primer Ta Cycles Product 
size (bp) 

hSox2 
F: CAACGGCAGCTACAGCA 

R: GGAGTGGGAGGAAGAGGT 
60oC 35 283 bp 

hOct4 
F: TGGGGGTTCTATTTGGGAAGG 

R: GTTCGCTTTCTCTTTCGGGC 
60oC 35 193 bp 

hGAPDH 
F: GTCAACGGATTTGGTCGTATTG 

R: CATGGGTGGAATCATATTGGAA 
60oC 35 139 bp 

mGAPDH 
F: GCATGGACTGTGGTCATGAG 

R:CCATCACCATCTTCCAGGAG 
60oC 35 322 bp 

 

Statistical Analysis 

Data were statistically interpreted usingGraphPad 
Prism software version 6. 
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Figure 7. Cardiac progenitor cells (CPCs) did not express 
hSox2 and hOct4. (a) CPCs did not express hOct4 and hSox2 
when cultured in vitro; (b) CPCs existed in transplanted tis-
sue and did not express hSox2 and hOct4 14 days post-
transplantationin vivo 

 
DISCUSSION 
In this study, we evaluated the potential of CPCs to 
repair damaged myocardial tissue. CPC transplanta-
tion minimized blood pressure fluctuation in trans-
planted mice similar to the control group; and was 
more stable compared with the PBS group. The en-
grafted CPCs survived and integrated with the host 
cardiac tissue, improved tissue structure, and pre-
vented the progression of fibrosis in the damaged 
heart muscle 14 days after transplantation. CPC trans-
plantation did not induce teratoma formation and the 
expression of cancer genes, including hOct4 and 
hSox2, in CPC-transplanted mice. In other studies, the 
transplantation of undifferentiated ESCs into rat mod-
els of MI tended to generate teratomas(Nussbaum et 
al., 2007). In our study, the transplantation of CPCs 
derived from UCB-MSCs did not form teratomas in 
transplanted tissue (Fig. 6, Fig. 7). This difference may 
be a result of the induction of different changes in the 
gene expression of CPCs and ESCs, whereby CPCs did 
not undergo oncogenic differentiation. This result was 
similar to the previous results of Huber et al., where 
human ESC-derived cardiomyocytes (hESC-CMs) 
were infused into a mouse model of MI (Huber et al., 
2007). The transplantation of these cells after MI did 
not lead to the formation of teratomas. However, the 
engrafted cardiomyocytes also failed to survive, pro-
liferate, or integrate with host cardiac tissue (Huber et 
al., 2007; Klug et al., 1996). In this study, the trans-
planted CPCs survived and integrated with the host 
cells (Fig. 5), which could be related to differences in 
cell sources, monitoring time, and cell differentiation 

procedures. However, hESC-CM transplantation im-
proved damaged heart function in a similar manner as 
CPC transplantation. Because cardiomyocyte loss 
plays a significant role in the development of heart 
failure, cardiomyogenesis is thus an important process 
in the regeneration of heart tissue (Laflamme and 
Murry, 2005, 2011). Interestingly, the results of CPC 
transplantation after 14 days showed that the left ven-
tricular wall of the CPC-infused group was thicker 
compared with the PBS group (Figure 3). Trichrome 
staining results also confirmed the absence of scar 
formation from the heart tissue of the CPC group 
(Figure 4), while a large scar was observed in the heart 
tissue of the PBS group (Figure 4). This result sug-
gested that grafted CPCs improved cardiac function 
deterioration in damaged heart tissue. Currently, there 
are several theories on how cell transplantation im-
proves myocardial perfusion and cardiac function. 
The transplanted cells are capable of differentiating 
into myocardial cells after infusion and eventually 
improve cardiac function. In addition, the trans-
planted cells may possess the ability to release 
paracrine factors, such as vascular endothelial growth 
factor, insulin-like growth factor, hepatocyte growth 
factor, and fibroblast growth factor, which activate 
endogenous cardiac progenitors to protect and repair 
lost heart muscle. In this study, it was demonstrated 
that the delivered CPCs managed to survive in the 
grafted tissue and did not transform into muscle fi-
bers, but maintained the functions of cardiac cells (Fig. 
4, Fig. 5). In contract, the heart tissue of the PBS group 
was severely damaged (Fig. 4, Fig. 5). This result was 
similar to previous studies about the ability of cells to 
integrate with host cardiac tissue both in vitro and in 

vivo(Kehat et al., 2004; Xue et al., 2005). This effect was 
identical to the positive effect of menstrual blood-
derived MSC (MMC) transplantation 2 weeks after 
LAD ligation (Hida et al., 2008); or similar to the re-
sults of porcine iPSC transplantation in a MI model (Li 
et al., 2013). The similarity between the grafted MMCs 
and iPSCs was that both exhibited the ability to differ-
entiate into heart cells after transplantation and dis-
played positive effects in clinical trials. Conversely, 
cardiac MSCs formed a scar after transplantation 
(Carlson et al., 2011; Silva et al., 2014), hESCs formed 
teratomas after transplantation (Hentze et al., 2009), 
and BM-MSCs had no influential effects on the grafted 
heart tissue after infarction (Grauss et al., 2007; Hou et 
al., 2007). Meanwhile, these cell types lack the ability 
to differentiate into heart muscle cells after transplan-
tation, whereas grafted CPCs were positive for specific 
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antibodies of myocardial cells before and after trans-
plantation, which might explain why CPC transplan-
tation was shown to have a favorable effect in animal 
models compared with other cell types. Although the 
initial results were encouraging, as well as showing 
significant potential for CPC application in animal 
models of damaged heart tissue caused by ischemia, 
further studies should be conducted using alternative 
methods, such as electrocardiography, or by increas-
ing the experimental evaluation timeline to produce 
stronger results. 

 

 

CONCLUSION 
The CP transplantation therapy in the mouse model of 
damaged myocardial tissue caused by ischemia ini-
tially showed positive effects for the prevention of 
myocardial injury after LAD ligation. 
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